Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Launch Performance Optimization of GTDI-DCT Powertrain

2015-04-14
2015-01-1111
A direct trajectory optimization approach is developed to assess the capability of a GTDI-DCT Powertrain, with a Gasoline Turbocharged Direct Injection (GTDI) engine and Dual Clutch Transmission (DCT), to satisfy stringent drivability requirements during launch. The optimization is performed directly on a high fidelity black box powertrain model for which a single simulation of a launch event takes about 8 minutes. To address this challenging problem, an efficient parameterization of the control trajectory using Gaussian kernel functions and a Mesh Adaptive Direct Search optimizer are exploited. The results and observations are reported for the case of clutch torque optimization for launch at normal conditions, at high altitude conditions and at non-zero grade conditions. The results and observations are also presented for the case of simultaneous optimization of multiple actuator trajectories at normal conditions.
Journal Article

The Effects of Temperature, Shear Stress, and Deposit Thickness on EGR Cooler Fouling Removal Mechanism - Part 1

2016-04-05
2016-01-0183
Exhaust Gas Recirculation (EGR) coolers are commonly used in diesel and modern gasoline engines to reduce the re-circulated gas temperature. A common problem with the EGR cooler is a reduction of the effectiveness due to the fouling layer primarily caused by thermophoresis, diffusion, and hydrocarbon condensation. Typically, effectiveness decreases rapidly at first, and asymptotically stabilizes over time. There are several hypotheses of this stabilizing phenomenon; one of the possible theories is a deposit removal mechanism. Verifying such a mechanism and finding out the correlation between the removal and stabilization tendency would be a key factor to understand and overcome the problem. Some authors have proposed that the removal is a possible influential factor, while other authors suggest that removal is not a significant factor under realistic conditions.
Journal Article

Control Strategies for Power Quantized Solid Oxide Fuel Cell Hybrid Powertrains: In Mobile Robot Applications

2016-04-05
2016-01-0317
This paper addresses scheduling of quantized power levels (including part load operation and startup/shutdown periods) for a propane powered solid oxide fuel cell (SOFC) hybridized with a lithium-ion battery for a tracked mobile robot. The military requires silent operation and long duration missions, which cannot be met by batteries alone due to low energy density or with combustion engines due to noise. To meet this need we consider an SOFC operated at a few discrete power levels where maximum system efficiency can be achieved. The fuel efficiency decreases during transients and resulting thermal gradients lead to stress and degradation of the stack; therefore switching power levels should be minimized. Excess generated energy is used to charge the battery, but when it’s fully charged the SOFC should be turned off to conserve fuel.
Journal Article

Powerpack Optimal Design Methodology with Embedded Configuration Benchmarking

2016-04-05
2016-01-0313
Design of military vehicle needs to meet often conflicting requirements such as high mobility, excellent fuel efficiency and survivability, with acceptable cost. In order to reduce the development cost, time and associated risk, as many of the design questions as possible need to be addressed with advanced simulation tools. This paper describes a methodology to design a fuel efficient powerpack unit for a series hybrid electric military vehicle, with emphasis on the e-machine design. The proposed methodology builds on previously published Finite element based analysis to capture basic design features of the generator with three variables, and couples it with a model reduction technique to rapidly re-design the generator with desired fidelity. The generator is mated to an off the shelf engine to form a powerpack, which is subsequently evaluated over a representative military drive cycles.
Journal Article

A Reduced-Order Model for Evaluating the Dynamic Response of Multilayer Plates to Impulsive Loads

2016-04-05
2016-01-0307
Assessing the dynamic performance of multilayer plates subjected to impulsive loading is of interest for identifying configurations that either absorb energy or transmit the energy in the transverse directions, thereby mitigating the through-thickness energy propagation. A reduced-order modeling approach is presented in this paper for rapidly evaluating the structural dynamic performance of various multilayer plate designs. The new approach is based on the reverberation matrix method (RMM) with the theory of generalized rays for fast analysis of the structural dynamic characteristics of multilayer plates. In the RMM model, the waves radiated from the dynamic load are reflected and refracted at each interface between layers, and the waves within each layer are transmitted with a phase lag. These two phenomena are represented by the global scattering matrix and the global phase matrix, respectively.
Journal Article

Study on Fatigue Behaviors of Porous T300/924 Carbon Fiber Reinforced Polymer Unidirectional Laminates

2017-03-28
2017-01-0223
Morphological features of voids were characterized for T300/924 12-ply and 16-ply composite laminates at different porosity levels through the implementation of a digital microscopy (DM) image analysis technique. The composite laminates were fabricated through compression molding. Compression pressures of 0.1MPa, 0.3MPa, and 0.5MPa were selected to obtain composite plaques at different porosity levels. Tension-tension fatigue tests at load ratio R=0.1 for composite laminates at different void levels were conducted, and the dynamic stiffness degradation during the tests was monitored. Fatigue mechanisms were then discussed based on scanning electron microscope (SEM) images of the fatigue fracture surfaces. The test results showed that the presence of voids in the matrix has detrimental effects on the fatigue resistance of the material, depending on the applied load level.
Journal Article

Cost-Effective Reduction of Greenhouse Gas Emissions via Cross-Sector Purchases of Renewable Energy Certificates

2017-03-28
2017-01-0246
Over half of the greenhouse gas (GHG) emissions in the United States come from the transportation and electricity generation sectors. To analyze the potential impact of cross-sector cooperation in reducing these emissions, we formulate a bi-level optimization model where the transportation sector can purchase renewable energy certificates (REC) from the electricity generation sector. These RECs are used to offset emissions from transportation in lieu of deploying high-cost fuel efficient technologies. The electricity generation sector creates RECs by producing additional energy from renewable sources. This additional renewable capacity is financed by the transportation sector and it does not impose additional cost on the electricity generation sector. Our results show that such a REC purchasing regime significantly reduces the cost to society of reducing GHG emissions. Additionally, our results indicate that a REC purchasing policy can create electricity beyond actual demand.
Journal Article

Two-Phase MRF Model for Wet Clutch Drag Simulation

2017-03-28
2017-01-1127
Wet clutch packs are widely used in today’s automatic transmission systems for gear-ratio shifting. The frictional interfaces between the clutch plates are continuously lubricated with transmission fluid for both thermal and friction management. The open clutch packs shear transmission fluid across the rotating plates, contributing to measurable energy losses. A typical multi-speed transmission includes as many as 5 clutch packs. Of those, two to three clutches are open at any time during a typical drive cycle, presenting an opportunity for fuel economy gain. However, reducing open clutch drag is very challenging, while meeting cooling requirements and shift quality targets. In practice, clutch design adjustment is performed through trial-and-error evaluation of hardware on a test bench. The use of analytical methodologies is limited for optimizing clutch design features due to the complexity of fluid-structure interactions under rotating conditions.
Journal Article

In-Vehicle Characterization of Wet Clutch Engagement Behaviors in Automatic Transmission Systems

2018-04-03
2018-01-0395
A new generation of a planetary-gear-based automatic transmission system is designed with an increasing number of ratio steps. It requires synchronous operation of one or more wet clutches, to achieve a complex shift event. A missed synchronization results in drive torque disturbance which may be perceived by vehicle occupants as an undesirable shift shock. Accurate knowledge of clutch behaviors in an actual vehicle environment is indispensable for achieving precise clutch controls and reducing shift calibration effort. Wet clutches are routinely evaluated on an industry-standard SAE#2 tester during the clutch design process. While it is a valuable tool for screening relative frictional behaviors, clutch engagement data from a SAE#2 tester do not correlate well with vehicle shift behaviors due to the limited reproducibility of realistic slip, actuator force profiles, and lubrication conditions.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses

2018-04-03
2018-01-1239
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets of different thicknesses are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens of different thicknesses with FDS joints with clearance hole were made and tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under quasi-static loading conditions. Under quasi-static loading conditions, as the thickness increases, the FDS joint failed from the penetration of the screw head into the upper sheet to the failure of the screw between the two sheets. Optical micrographs also show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under cyclic loading conditions.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Journal Article

Low-Order Contact Load Distribution Model for Ball Nut Assemblies

2016-04-05
2016-01-1560
Ball nut assemblies (BNAs) are used in a variety of applications, e.g., automotive, aerospace and manufacturing, for converting rotary motion to linear motion (or vice versa). In these application areas, accurate characterization of the dynamics of BNAs using low-order models is very useful for performance simulation and analyses. Existing low-order contact load models of BNAs are inadequate, partly because they only consider the axial deformations of the screw and nut. This paper presents a low-order load distribution model for BNAs which considers the axial, torsional and lateral deformations of the screw and nut. The screw and nut are modeled as finite element beams, while Hertzian Contact Theory is used to model the contact condition between the balls and raceways of the screw and nut. The interactions between the forces and displacements of the screw and nut and those at the ball-raceway contact points are established using transformation matrices.
Journal Article

Residual Stress Distributions in Rectangular Bars Due to High Rolling Loads

2016-04-05
2016-01-0424
In this paper, residual stress distributions in rectangular bars due to rolling or burnishing at very high rolling or burnishing loads are investigated by roll burnishing experiments and three-dimensional finite element analyses using ABAQUS. First, roll burnishing experiments on rectangular bars at two roller burnishing loads are presented. The results indicate the higher burnishing load induces lower residual stresses and the higher burnishing load does not improve fatigue lives. Next, in the corresponding finite element analyses, the roller is modeled as rigid and the roller rolls on the flat surface of the bar with a low coefficient of friction. The bar material is modeled as an elastic-plastic strain hardening material with a nonlinear kinematic hardening rule for loading and unloading.
Journal Article

Stress Intensity Factor Solutions for Welds in Lap-Shear Specimens under Clamped Loading Conditions

2016-04-05
2016-01-0504
Analytical stress intensity factor solutions for welds in lap-shear specimens of equal thickness under pinned and clamped loading conditions based on the beam bending theory are presented and examined. Finite element analyses are also employed to obtain the stress intensity factor solutions for welds in lap-shear specimens under both clamped and pinned loading conditions. The computational solutions are compared well with the analytical solutions. The results of the analytical and computational solutions indicate that the bending moments at the clamped edges reduce the mode I and II stress intensity factor solutions by about 7% to 10% for the given specimen geometry. The effects of the clamped grips depend on the ratio of the weld width to the specimen length. Comparisons of the stress intensity factor solutions suggest that the fatigue lives of the welds in lap-shear specimens under clamped loading conditions should be higher than those under pinned loading conditions.
Journal Article

Investigation of Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets

2016-04-05
2016-01-0501
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole are investigated based on experiments and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints were tested under cyclic loading conditions. Optical micrographs show that the failure modes of the FDS joints in specimens with and without clearance hole are quite similar under cyclic loading conditions. The fatigue lives of the FDS joints in specimens with clearance hole are longer than those of the FDS joints in specimens without clearance hole for the given load ranges under cyclic loading conditions. A structural stress fatigue life estimation model is adopted to estimate the fatigue lives of the FDS joints in lap-shear specimens under high-cycle loading conditions.
Journal Article

Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program

2017-03-28
2017-01-0723
This paper describes a novel design and verification process for analytical methods used in the development of advanced combustion strategies in internal combustion engines (ICE). The objective was to improve brake thermal efficiency (BTE) as part of the US Department of Energy SuperTruck program. The tools and methods herein discussed consider spray formation and injection schedule along with piston bowl design to optimize combustion efficiency, air utilization, heat transfer, emission, and BTE. The methodology uses a suite of tools to optimize engine performance, including 1D engine simulation, high-fidelity CFD, and lab-scale fluid mechanic experiments. First, a wide range of engine operating conditions are analyzed using 1-D engine simulations in GT Power to thoroughly define a baseline for the chosen advanced engine concept; secondly, an optimization and down-select step is completed where further improvements in engine geometries and spray configurations are considered.
Journal Article

Evaluation of the Seat Index Point Tool for Military Seats

2016-04-05
2016-01-0309
This study evaluated the ISO 5353 Seat Index Point Tool (SIPT) as an alternative to the SAE J826 H-point manikin for measuring military seats. A tool was fabricated based on the ISO specification and a custom back-angle measurement probe was designed and fitted to the SIPT. Comparisons between the two tools in a wide range of seating conditions showed that the mean SIP location was 5 mm aft of the H-point, with a standard deviation of 7.8 mm. Vertical location was not significantly different between the two tools (mean - 0.7 mm, sd 4.0 mm). A high correlation (r=0.9) was observed between the back angle measurements from the two tools. The SIPT was slightly more repeatable across installations and installers than the J826 manikin, with most of the discrepancy arising from situations with flat seat cushion angles and either unusually upright or reclined back angles that caused the J826 manikin to be unstable.
Technical Paper

Minimization of Electric Heating of the Traction Induction Machine Rotor

2020-04-14
2020-01-0562
The article solves the problem of reducing electric power losses of the traction induction machine rotor to prevent its overheating in nominal and high-load modes. Electric losses of the rotor power are optimized by the stabilization of the main magnetic flow of the electric machine at a nominal level with the amplitude-frequency control in a wide range of speeds and increased loads. The quasi-independent excitation of the induction machine allows us to increase the rigidity of mechanical characteristics, decrease the rotor slip at nominal loads and overloads and significantly decrease electrical losses in the rotor as compared to other control methods. The article considers the technology of converting the power of individual phases into a single energy flow using a three-phase electric machine equivalent circuit and obtaining an energy model in the form of equations of instantaneous active and reactive power balance.
Technical Paper

Energy, Fuels, and Cost Analyses for the M1A2 Tank: A Weight Reduction Case Study

2020-04-14
2020-01-0173
Reducing the weight of the M1A2 tank by lightweighting hull, suspension, and track results in 5.1%, 1.3%, and 0.6% tank mass reductions, respectively. The impact of retrofitting with lightweight components is evaluated through primary energy demand (PED), cost, and fuel consumption (FC). Life cycle stages included are preproduction (design, prototype, and testing), material production, part fabrication, and operation. Metrics for lightweight components are expressed as ratios comparing lightweighted and unmodified tanks. Army-defined drive cycles were employed and an FC vs. mass elasticity of 0.55 was used. Depending on the distance traveled, cost to retrofit and operate a tank with a lightweighted hull is 3.5 to 19 times the cost for just operating an unmodified tank over the same distance. PED values for the lightweight hull are 1.1 to 2 times the unmodified tank. Cost and PED ratios decrease with increasing distance.
Technical Paper

Real-Time Embedded Models for Simulation and Control of Clean and Fuel-Efficient Heavy-Duty Diesel Engines

2020-04-14
2020-01-0257
This paper presents a framework for modeling a modern diesel engine and its aftertreatment system which are intended to be used for real-time implementation as a virtual engine and in a model-based control architecture to predict critical variables such as fuel consumption and tailpipe emissions. The models are specifically able to capture the impact of critical control variables such as the Exhaust Gas Recirculation (EGR) valve position and fuel injection timing, as well as operating conditions of speed and torque, on the engine airpath variables and emissions during transient driving conditions. To enable real-time computation of the models, a minimal realization of the nonlinear airpath model is presented and it is coupled with a cycle averaged NOx emissions predictor to estimate feed gas NOx emissions. Then, the feedgas enthalpy is used to calculate the thermal behavior of the aftertreatment system required for prediction of tailpipe emissions.
X